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1. Even-hole-free graphs

I H is an induced subgraph of G if H can be obtained from G
by deleting vertices (denoted by H ⊆ind G )

Figure: A graph, an induced subgraph, and a non-induced subgraph

I G is H-free if no induced subgraph of G is isomorphic to H

I When F is a family of graphs, F-free means H-free, ∀H ∈ F
So, a graph is even-hole-free (EHF) if it does not contain even
holes as induced subgraph.

Figure: Even-hole-free graphs are (theta, prism)-free



2. Tree-width (tw(G ))

I Tree-width is a graph parameter (integer ≥ 1) that describes
the structural complexity of the graph.

I It measures how close G from being a tree.

I This notion is introduced in the graph-minor-theory papers of
Robertson & Seymour. This was initially defined by Halin
(1976).



2a. Computing tree-width trough tree decomposition

Tree decomposition of G is a pair
(
T , (Bx ⊆ V (G ))x∈V (T )

)
:

I T is a tree

I {Bx}x∈V (T ) is a collection of bags.

such that:

I ∀v ∈ V (G ), ∃x ∈ V (T ) s.t. v ∈ Bx ;

I ∀v ∈ V (G ), the set {x ∈ V (T ) : v ∈ Bx} induces a
non-empty subtree of T ;

I ∀vw ∈ E (G ), there is some bag Bx containing both v and w .
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2a. Computing tree-width trough tree decomposition

1. Every vertex is in a bag

2. Every edge is in a bag

3. ∀v ∈ V (G), the support
of v forms a subtree
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I width of T is the size of the largest bag - 1

I tree-width of G is the width of the optimal tree
decomposition of G



2b. Computing tree-width trough chordalization

tw(G ) = min
H chordalization of G

{ω(H)− 1}

I Chordal graphs are graphs possessing no hole (chordless cycle)

I A chordalization of G is a graph H obtained by adding edges
to G , such that H is chordal
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Figure: A chordalization of a graph and its tree-like structure



2c. Computing tree-width trough bramble

I A bramble for a graph G is a family of connected subgraphs
of G that all touch each other: for every X and Y in the
bramble, either X and Y share a vertex or an edge.

Figure: A bramble of order 4 in a 3× 3 grid graph, consisting of six
mutually touching connected subgraphs (source: wikipedia)

I The order of a bramble is the smallest size of a hitting set, a
set of vertices of G that has a nonempty intersection with
each of the subgraphs.



2d. Complexity of computing tree-width

I Determining whether a given graph G has tree-width at most
a given variable k is NPC [Arnborg et al. (1987)].

I If k is fixed, the graphs with tree-width k can be recognized,
and constructing a tree decomposition of width k is in O(1)
[Bodlaender (1996)].

Theorem (Courcelle (1990))

Every graph property definable in the monadic second-order logic
of graphs can be decided in linear time on graphs of bounded
tree-width.

→ by dynamic programming using the tree decomp. of the graphs.
→ Graph problems expressible in MSO: coloring, MIS, etc.



3. Path-width (pw(G ))

Path decomposition is a special type of tree decomposition. Hence,

pw(G ) ≥ tw(G )
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Theorem (Cygan, et al. (2015))

Let G be a graph, and I be an interval graph that contains G as a
subgraph (possibly not induced). Then pw(G ) ≤ ω(I )− 1, where
ω(I ) is the size of the maximum clique of I .

Interval graph: intersection graphs of a set of subpaths of a path.



4. Rank-width (rw(G ))

rw(G ) = k ∈ Z+ if G can be decomposed into tree-like structures
by splitting V (G ) s.t. each cut induces a matrix of rank ≤ k .
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Rank decomposition is a cubic tree T , with a bijection ν : V (G )→ L(T )

I width(e) : cut-rank of the adjacency matrix of the separation

I width(T ) : max{width(e) | e ∈ E (T )}
I rank-width of G is the width of the ”best” rank decomposition



5. Clique-width (cw(G ))

cw(G ) is the minimum number of labels needed to construct G by
a sequence of the following operations: disjoint unions, relabelings,
and label-joins.

Figure: Construction of a distance-hereditary graph of clique-width 3
(source: wikipedia)



6. Branch-width (bw(G ))

I e-partition is the partition of T into subtrees T1 and T2 by
cutting T on the edge e.

I The width of an e-separation is the number of vertices of G
that are incident both to an edge of E1 and to an edge of E2;

I The branchwidth of G is the minimum width of any
branch-decomposition of G .



7. Relation between width parameters

Lemma (Corneil, Rotics (2005) and Oum, Seymour (2006))

For every graph G , the followings hold:

I rw(G ) ≤ cw(G ) ≤ 2rw(G)+1;

I cw(G ) ≤ 3 · 2tw(G)−1;

I tw(G ) ≤ pw(G ).

Notation: rw: rank-width, cw: clique-width, tw: tree-width, pw:
path-width



7. Relation between width parameters

I Graph classes of bounded tree-width are necessarily sparse.

I There exist dense graph classes with bounded clique-width.

Clique-width of Kn is 2, but the tree-width is n − 1.
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8. Results on width of EHF graphs

a. Planar EHF → tw ≤ 49 [Silva, da Silva, Sales (2010)]

b. Pan-free EHF → tw ≤ 1.5ω(G )− 1 [Cameron, Chaplick, Hoàng (2015)]

c. K3-free EHF → tw ≤ 5 [Cameron, da Silva, Huang, Vušković (2018)]

d. Cap-free EHF → tw ≤ 6ω(G )− 1 [Cameron, da Silva, Huang, Vušković (2018)]

e. EHF without star cutset → bounded rank-wd [Le (2018)]

f. Diamond-free EHF → unbounded rank-wd [Adler et al. (2018)]

g. K4-free EHF → unbounded tree-wd [S., Trotignon (2019)]

h. EHF without Kk -minor → tw ≤ f (k) [Aboulker, et al. (2020)]

i. EHF with maximum degree ≤ 3 → tw ≤ 3 [Aboulker, et al. (2020)]

j. EHF with bounded maximum degree (i.e. any ∆(G ) = d) →
tw ≤ f (d) [Abrishami, Chudnosky, Vušković (2021)]



8a. Tree-width and grid-minor

I Planar EHF graphs have tree-width ≤ 49.

H is a minor of G if H can be formed from G by deleting edges
and vertices and by contracting edges.

Theorem
If H is a minor of G , then tw(H) ≤ tw(G ).

Let G(r×r) be the the largest square grid-minor in G ,

I Since tw(G(r×r)) = r , we have tw(G ) ≥ r .

I The grid-minor-theorem (Robertson & Seymour):
∃f a function s.t. tw(G ) ≤ f (r)



8a. Tree-width and grid-minor
I If G is planar and does not contain a (k × k)-grid as a minor,

then tw(G ) ≤ 6k − 5 [Robertson, Seymour, Thomas (1994)].

Theorem
Every planar even-hole-free graph has tree-width at most 49 [Silva,

da Silva, Sales (2010)].

I Any G(9×9)-model of minor contains a theta or a prism (which
contains an even hole).
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Figure: An example of a model of K5-minor



8b. Results on width of EHF graphs

Theorem (Cameron, Chaplick, Hoàng (2015))

Every (even hole, pan)-free graph G satisfies tw(G ) ≤ 1.5ω(G )− 1
.

Proof. skipped



8c. EHF triangle-free graphs have bounded tw and cw
Let C be the class of (triangle, theta, even wheel)-free graphs.

Theorem
Every G ∈ C satisfies tw(G ) ≤ 5 [Cameron, da Silva, Huang, Vušković

(2018)].

Theorem (Conforti, Cornuéjols, Kapoor, Vušković (2000))

Every G ∈ C either (i) contains at most three vertices; (ii) is the
cube; (iii) has no K1 or K2 separator; or it can be obtained,
starting from a hole, by a sequence of good ear additions.
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8c. EHF triangle-free graphs have bounded tw and cw
Let C be the class of (triangle, theta, even wheel)-free graphs.

Theorem
Every G ∈ C satisfies tw(G ) ≤ 5 [Cameron, da Silva, Huang, Vušković

(2018)].

Chordalization technique applied to the constructed graph.
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Figure: Every graph built in this way is a subgraph of a chordal graph
with ω = 6



8c. EHF triangle-free graphs have bounded tw and cw

Let C be the class of (triangle, theta, even wheel)-free graphs.

Theorem
Every G ∈ C satisfies tw(G ) ≤ 5 [Cameron, da Silva, Huang, Vušković

(2018)].

Recall that Corneil and Rotics (2005) show that

cw(G ) ≤ 3× 2tw(G)−1

Corollary

Every (even hole, triangle)-free graph G satisfies cw(G ) ≤ 48.



8d. EHF cap-free graphs have ω-bounded tw

Theorem (Cameron, da Silva, Huang, Vušković (2018))

An (even hole, cap)-free graph G satisfies tw(G ) ≤ 6ω(G )− 1.



8d. EHF cap-free graphs have ω-bounded tw

Theorem (Cameron, da Silva, Huang, Vušković (2018))

An (even hole, cap)-free graph G satisfies tw(G ) ≤ 6ω(G )− 1.

Theorem (Cameron, da Silva, Huang, Vušković (2018))

Every (even-hole, cap)-free graph G is obtained from a maximal
induced subgraph F of G with at least 3 vertices, by first blowing
up vertices of F into cliques, and then adding a universal clique.

ω∆ = 6 ω∆ ≤ 6(ω(G)− |U |) + |U |
≤ 6ω(G)≤ 6(ω(G)− |U |)

ω∆ = maxv 6|Kv|



8e. EHF graphs having no star cutset

Theorem (Le (2018))

Every even-hole-free graph G with no star cutset has rank-width at
most 3.

I Every G ∈ C can be decomposed using 2-join.
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Figure: Scheme of a 2-join decomposition

I The set of basic graphs: cliques, holes, long pyramid,
extended nontrivial basic graphs.



8e. EHF graphs having no star cutset

Theorem (Le (2018))

Every even-hole-free graph G with no star cutset has rank-width at
most 3.

I The set of basic graphs: cliques, holes, long pyramid,
extended nontrivial basic graphs.

I Rank-decomposition of the merged graph in C
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Figure: Rank-decomposition of the two blocks G1 and G2, and a
rank-decomposition of G obtained by identifying u1v1 and v2u2



8e. EHF graphs having no star cutset

Theorem (Le (2018))

Every even-hole-free graph G with no star cutset has rank-width at
most 3.

I The set of basic graphs: cliques, holes, long pyramid,
extended nontrivial basic graphs.

I Every basic graph has rank-width at most 3: rw(clique) ≤ 1,
rw(hole) ≤ 2, rw(long pyramid) ≤ 3, or rw(extended
nontrivial basic graph) ≤ 3.
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I Merging two blocks of the 2-join decomposition preserves the
rank-width.



8f. Results on width of EHF graphs

Theorem (Adler, et al. (2018))

∃ a family of (even hole, diamond)-free graphs without clique
cutsets with unbounded rank-width.

Figure: A diamond-free ehf graph that may have arbitrarily large
rank-width

So, excluding clique cutset 6⇒ bounded tree-width.



8g. Tree-width of K4-free EHF graphs is unbounded
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large tree-width.
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8g. Tree-width of K4-free EHF graphs is unbounded

Why these graphs have large tree-width?

contract every layer into a vertex

` + 1 layers

I The graph contains K`+1-minor.

Theorem (S., Trotignon (2019))

For any ` ≥ 0, layered-wheels on `+ 1 layers have tree-width at
least `.



8g. Tree-width of K4-free EHF graphs is unbounded

It was actually cheating... The graph is not an even-hole-free graph
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8g. Rank-width of K4-free EHF graphs is unbounded

Theorem (Gurski, Wanke (1928))

If a graph G contains no K3,3 as a subgraph, then
tw(G ) ≤ 6cw(G )− 1.

Theorem
A layered wheel contains no K3,3 as a subgraph.

I If one side of the K3,3 is a clique, then G contains a K4.

I Otherwise, each side of K3,3 contains a non-edge, so G
contains K2,2 (i.e. C4).

Lower bound: the clique-width of a layered wheel on `+ 1 layers
is at least `+1

6 .



8g. Rank-width of K4-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))

For ` ≥ 2, there exists a layered wheel G` with rank-width at
least `.

X

Y



8g. Tree-width of K4-free EHF graphs is in O(log n)

Theorem (Cygan, et al. (2015))

tw(G`) ≤ pw(G`) ≤ ω(I)− 1, where I is an interval graph
containing G` as a subgraph

L1

L0

L2

L2

L1

L0

K2`+1 K2`

Figure: Interval graph I that contains a layered wheel with 3 layers



8g. Analysis of layered wheel

I We actually have a parameter k for G` that determines the
girth of G`. Given large k , this family provides an example of
sparse graph with high tree-width.

I G` needs a huge number of vertices to increase the lower
bound on the tree-width, and it must contain a vertex of high
degree.



8h. EHF graphs with no Kk minor have tw ≤ f (k)

Theorem (Aboulker, Adler, Kim, S., Trotignon (2021))

An even-hole-free graph G with no Kk -minor satisfies tw ≤ f (k).

Induced-wall theorem for H-minor-free graph

Theorem (Aboulker, Adler, Kim, S., Trotignon (2021))

∀H, if G is H-minor-free with tw(G ) ≥ fH(k), then G contains a
(k × k)-wall (possibly subdivided) or the line graph of a chordless
(k × k)-wall (or call it co-wall) as an induced subgraph.

Figure: A (k × k)-wall and (k × k)-co-wall



8h. EHF graphs with no Kk minor have tw ≤ f (k)

Theorem (Fomin, Golovach, Thilikos, 2011)

For every H and an integer k , there exists a function fH(k) s.t. for
every connected H-minor free graph G with tw(G ) ≥ fH(k), G
contains either Γk or Πk as a contraction.

Figure: Γ6 and Π6

G ′ is a contraction of G if G ′ can be obtained by contracting edges of G



8h. EHF graphs with no Kk minor have tw ≤ f (k)

Let G be s.t. tw(G ) ≥ fH(k), then G contains Γk or Πk

Figure: We can extract a triangulated grid



8h. EHF graphs with no Kk minor have tw ≤ f (k)

contraction

Figure: Consider the graph containing the contracted triangulated grid



8h. EHF graphs with no Kk minor have tw ≤ f (k)

contraction
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Figure: For some constant size of the triangulated grid, we find forks and
semiforks



8h. EHF graphs with no Kk minor have tw ≤ f (k)

Figure: Combining them, we get a large stone wall

Figure: Applying a ”cleaning” procedure, we can extract a (k × k)-wall or
a (k × k)-co-wall



8i. EHF graphs with ∆ ≤ 3 have bounded tree-width

Theorem (Aboulker, Adler, Kim, S., Trotignon (2020))

An even-hole-free graph with maximum degree at most 3 has
tree-width at most 3.

Theorem (Aboulker, Adler, Kim, S., Trotignon (2020))

Let G be a (theta, prism)-free subcubic graph. Then either:

I G is a basic graph; or

I G has a clique separator of size at most 2; or

I G has a proper separator.



8i. EHF graphs with ∆ ≤ 3 have bounded tree-width

Theorem (Aboulker, Adler, Kim, S., Trotignon (2020))

Let G be a (theta, prism)-free subcubic graph. Then either:

I G is a basic graph; or

I G has a clique separator of size at most 2; or

I G has a proper separator.
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proper separation

proper wheel pyramid

Kn, n ≤ 4 extended prism hole

cube

Figure: Basic graphs and proper separator



8i. EHF graphs with ∆ ≤ 3 have bounded tree-width

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)

Subcubic even-hole-free graphs have tree-width ≤ 3.

Sketch of proof.

I Every basic graph has tree-width at most 3

I “Gluing” along a clique and proper gluing preserve tree-width
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How to prove a class C has bounded/unbounded (·)-width?

I Proving unbounded tree-width/rank-width is done by giving a
family of graphs in C whose tree-width grows with the size of
the graphs.

I Proving the ”bounded” case is done by applying the structural
properties of the class (such as: the structure theorem), apply
graph chordalization.

I Just a feeling: unboundedness might be ”easier” to prove via
rank-width than clique-width.
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