Some Width Parameters and Even-Hole-Free Graphs

Dewi Sintiari

January 21st, 2022

1. Even-hole-free graphs

- H is an induced subgraph of G if H can be obtained from G by deleting vertices (denoted by $H \subseteq \subseteq_{\text {ind }} G$)

Figure: A graph, an induced subgraph, and a non-induced subgraph

- G is H-free if no induced subgraph of G is isomorphic to H
- When \mathcal{F} is a family of graphs, \mathcal{F}-free means H-free, $\forall H \in \mathcal{F}$

So, a graph is even-hole-free (EHF) if it does not contain even holes as induced subgraph.

Figure: Even-hole-free graphs are (theta, prism)-free

2. Tree-width $(\operatorname{tw}(G))$

- Tree-width is a graph parameter (integer ≥ 1) that describes the structural complexity of the graph.
- It measures how close G from being a tree.
- This notion is introduced in the graph-minor-theory papers of Robertson \& Seymour. This was initially defined by Halin (1976).

2a. Computing tree-width trough tree decomposition

Tree decomposition of G is a pair $\left(T,\left(B_{x} \subseteq V(G)\right)_{x \in V(T)}\right)$:

- T is a tree
- $\left\{B_{x}\right\}_{x \in V(T)}$ is a collection of bags.
such that:
- $\forall v \in V(G), \exists x \in V(T)$ s.t. $v \in B_{x}$;
- $\forall v \in V(G)$, the set $\left\{x \in V(T): v \in B_{x}\right\}$ induces a non-empty subtree of T;
- $\forall v w \in E(G)$, there is some bag B_{x} containing both v and w.

2a. Computing tree-width trough tree decomposition

AXIOMS

1. Every vertex is in a bag
2. Every edge is in a bag
3. $\forall v \in V(G)$, the support of v forms a subtree

- width of T is the size of the largest bag - 1
- tree-width of G is the width of the optimal tree decomposition of G

2b. Computing tree-width trough chordalization

$$
\operatorname{tw}(G)=\min _{H \text { chordalization of } G}\{\omega(H)-1\}
$$

- Chordal graphs are graphs possessing no hole (chordless cycle)
- A chordalization of G is a graph H obtained by adding edges to G, such that H is chordal

Figure: A chordalization of a graph and its tree-like structure

2c. Computing tree-width trough bramble

- A bramble for a graph G is a family of connected subgraphs of G that all touch each other: for every X and Y in the bramble, either X and Y share a vertex or an edge.

Figure: A bramble of order 4 in a 3×3 grid graph, consisting of six mutually touching connected subgraphs (source: wikipedia)

- The order of a bramble is the smallest size of a hitting set, a set of vertices of G that has a nonempty intersection with each of the subgraphs.

2d. Complexity of computing tree-width

- Determining whether a given graph G has tree-width at most a given variable k is NPC [Arnborg et al. (1987)].
- If k is fixed, the graphs with tree-width k can be recognized, and constructing a tree decomposition of width k is in $\mathcal{O}(1)$ [Bodlaender (1996)].

Theorem (Courcelle (1990))
Every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded tree-width.
\rightarrow by dynamic programming using the tree decomp. of the graphs.
\rightarrow Graph problems expressible in MSO: coloring, MIS, etc.

3. Path-width $(p w(G))$

Path decomposition is a special type of tree decomposition. Hence,

$$
p w(G) \geq t w(G)
$$

Theorem (Cygan, et al. (2015))
Let G be a graph, and I be an interval graph that contains G as a subgraph (possibly not induced). Then $p w(G) \leq \omega(I)-1$, where $\omega(I)$ is the size of the maximum clique of I.

Interval graph: intersection graphs of a set of subpaths of a path.

4. Rank-width $(r w(G))$

$r w(G)=k \in \mathbb{Z}^{+}$if G can be decomposed into tree-like structures by splitting $V(G)$ s.t. each cut induces a matrix of rank $\leq k$.

$$
\underset{\operatorname{width}(e)}{=\operatorname{rank}}\left(\begin{array}{l}
v_{5} \\
v_{6} \\
v_{7} \\
v_{7}
\end{array} v_{2} v_{3} v_{4}\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
v_{8} \\
v_{9} & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\right)=3
$$

Hlineny et. al. Width parameters beyond tree-width and their applications, The Computer Journal (51), 2008
Rank decomposition is a cubic tree \mathcal{T}, with a bijection $\nu: V(G) \rightarrow \mathcal{L}(\mathcal{T})$

- width (e) : cut-rank of the adjacency matrix of the separation
- $\operatorname{width}(\mathcal{T}): \max \{\operatorname{width}(e) \mid e \in E(\mathcal{T})\}$
- rank-width of G is the width of the "best" rank decomposition

5. Clique-width $(c w(G))$

$C W(G)$ is the minimum number of labels needed to construct G by a sequence of the following operations: disjoint unions, relabelings, and label-joins.

1. Creation of a new vertex v with label i (noted $i(v)$)
2. Disjoint union of two labeled graphs G and H (denoted $G \oplus H$)
3. Joining by an edge every vertex labeled i to every vertex labeled j (denoted $\nu(i, j)$), where $i \neq j$
4. Renaming label i to label j (denoted $\rho(i, j)$)

Figure: Construction of a distance-hereditary graph of clique-width 3 (source: wikipedia)

6. Branch-width $(b w(G))$

- e-partition is the partition of T into subtrees T_{1} and T_{2} by cutting T on the edge e.
- The width of an e-separation is the number of vertices of G that are incident both to an edge of E_{1} and to an edge of E_{2};
- The branchwidth of G is the minimum width of any branch-decomposition of G.

7. Relation between width parameters

Lemma (Corneil, Rotics (2005) and Oum, Seymour (2006))

For every graph G, the followings hold:

- $\operatorname{rw}(G) \leq \operatorname{cw}(G) \leq 2^{r w(G)+1}$;
- $\mathrm{cw}(G) \leq 3 \cdot 2^{\operatorname{tw}(G)-1}$;
- $\mathrm{tw}(G) \leq \mathrm{pw}(G)$.

Notation: rw: rank-width, cw: clique-width, tw: tree-width, pw: path-width

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

7. Relation between width parameters

- Graph classes of bounded tree-width are necessarily sparse.
- There exist dense graph classes with bounded clique-width.

Clique-width of K_{n} is 2 , but the tree-width is $n-1$.

8. Results on width of EHF graphs

a. Planar EHF $\rightarrow t w \leq 49$ [silva, da Silva, Sales (2010)]
b. Pan-free EHF $\rightarrow t w \leq 1.5 \omega(G)-1$ [Cameron, Chaplick, Hoàng (2015)]
c. K_{3}-free EHF $\rightarrow t w \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)]
d. Cap-free EHF $\rightarrow t w \leq 6 \omega(G)-1$ [Cameron, da Silva, Huang, Vušković (2018)]
e. EHF without star cutset \rightarrow bounded rank-wd [Le (2018)]
f. Diamond-free EHF \rightarrow unbounded rank-wd [Ader et al. (2018)]
g. K_{4}-free EHF \rightarrow unbounded tree-wd [s., Trotignon (2019)]
h. EHF without K_{k}-minor $\rightarrow t w \leq f(k)$ [Aboulker, et al. (2020)]
i. EHF with maximum degree $\leq 3 \rightarrow t w \leq 3$ [Aboulker, et al. (2020)]
j. EHF with bounded maximum degree (i.e. any $\Delta(G)=d$) \rightarrow $t w \leq f(d)$ [Abrishami, Chudnosky, Vušković (2021)]

8a. Tree-width and grid-minor

- Planar EHF graphs have tree-width ≤ 49.
H is a minor of G if H can be formed from G by deleting edges and vertices and by contracting edges.

Theorem
If H is a minor of G, then $t w(H) \leq t w(G)$.
Let $G_{(r \times r)}$ be the the largest square grid-minor in G,

- Since $t w\left(G_{(r \times r)}\right)=r$, we have $t w(G) \geq r$.
- The grid-minor-theorem (Robertson \& Seymour): $\exists f$ a function s.t. $t w(G) \leq f(r)$

8a. Tree-width and grid-minor

- If G is planar and does not contain a $(k \times k)$-grid as a minor, then $t w(G) \leq 6 k-5$ [Robertson, Seymour, Thomas (1994)].

Theorem
Every planar even-hole-free graph has tree-width at most 49 [Silva, da Silva, Sales (2010)].

- Any $G_{(9 \times 9)}$-model of minor contains a theta or a prism (which contains an even hole).

Figure: An example of a model of K_{5}-minor

8b. Results on width of EHF graphs

Theorem (Cameron, Chaplick, Hoàng (2015))
Every (even hole, pan)-free graph G satisfies $t w(G) \leq 1.5 \omega(G)-1$

Proof. skipped

8c. EHF triangle-free graphs have bounded $t w$ and $c w$ Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $t w(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Theorem (Conforti, Cornuéjols, Kapoor, Vušković (2000))
Every $G \in \mathcal{C}$ either (i) contains at most three vertices; (ii) is the cube; (iii) has no K_{1} or K_{2} separator; or it can be obtained, starting from a hole, by a sequence of good ear additions.

8c. EHF triangle-free graphs have bounded $t w$ and $c w$ Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $t w(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Theorem (Conforti, Cornuéjols, Kapoor, Vušković (2000))
Every $G \in \mathcal{C}$ either (i) contains at most three vertices; (ii) is the cube; (iii) has no K_{1} or K_{2} separator; or it can be obtained, starting from a hole, by a sequence of good ear additions.

8c. EHF triangle-free graphs have bounded $t w$ and $c w$ Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $t w(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Theorem (Conforti, Cornuéjols, Kapoor, Vušković (2000))
Every $G \in \mathcal{C}$ either (i) contains at most three vertices; (ii) is the cube; (iii) has no K_{1} or K_{2} separator; or it can be obtained, starting from a hole, by a sequence of good ear additions.

8c. EHF triangle-free graphs have bounded $t w$ and $c w$ Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $t w(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Theorem (Conforti, Cornuéjols, Kapoor, Vušković (2000))
Every $G \in \mathcal{C}$ either (i) contains at most three vertices; (ii) is the cube; (iii) has no K_{1} or K_{2} separator; or it can be obtained, starting from a hole, by a sequence of good ear additions.

8c. EHF triangle-free graphs have bounded $t w$ and $c w$ Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $t w(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Theorem (Conforti, Cornuéjols, Kapoor, Vušković (2000))
Every $G \in \mathcal{C}$ either (i) contains at most three vertices; (ii) is the cube; (iii) has no K_{1} or K_{2} separator; or it can be obtained, starting from a hole, by a sequence of good ear additions.

8c. EHF triangle-free graphs have bounded $t w$ and $c w$ Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $\operatorname{tw}(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Chordalization technique applied to the constructed graph.

Figure: Every graph built in this way is a subgraph of a chordal graph with $\omega=6$

8c. EHF triangle-free graphs have bounded $t w$ and $c w$

Let \mathcal{C} be the class of (triangle, theta, even wheel)-free graphs.
Theorem
Every $G \in \mathcal{C}$ satisfies $t w(G) \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)].

Recall that Corneil and Rotics (2005) show that

$$
c w(G) \leq 3 \times 2^{t w(G)-1}
$$

Corollary
Every (even hole, triangle)-free graph G satisfies $c w(G) \leq 48$.

8d. EHF cap-free graphs have ω-bounded $t w$

Theorem (Cameron, da Silva, Huang, Vušković (2018))
An (even hole, cap)-free graph G satisfies $t w(G) \leq 6 \omega(G)-1$.

8d. EHF cap-free graphs have ω-bounded tw

Theorem (Cameron, da Silva, Huang, Vušković (2018))
An (even hole, cap)-free graph G satisfies $t w(G) \leq 6 \omega(G)-1$.
Theorem (Cameron, da Silva, Huang, Vušković (2018))
Every (even-hole, cap)-free graph G is obtained from a maximal induced subgraph F of G with at least 3 vertices, by first blowing up vertices of F into cliques, and then adding a universal clique.

$\omega_{\Delta}=6$

$$
\begin{aligned}
\omega_{\Delta} & =\max _{v} 6\left|K_{v}\right| \\
& \leq 6(\omega(G)-|U|)
\end{aligned}
$$

$$
\begin{aligned}
\omega_{\Delta} & \leq 6(\omega(G)-|U|)+|U| \\
& \leq 6 \omega(G)
\end{aligned}
$$

8e. EHF graphs having no star cutset

Theorem (Le (2018))

Every even-hole-free graph G with no star cutset has rank-width at most 3.

- Every $G \in \mathcal{C}$ can be decomposed using 2-join.

Figure: Scheme of a 2-join decomposition

- The set of basic graphs: cliques, holes, long pyramid, extended nontrivial basic graphs.

8e. EHF graphs having no star cutset

Theorem (Le (2018))
Every even-hole-free graph G with no star cutset has rank-width at most 3.

- The set of basic graphs: cliques, holes, long pyramid, extended nontrivial basic graphs.
- Rank-decomposition of the merged graph in \mathcal{C}

the marker path lies here
Figure: Rank-decomposition of the two blocks G_{1} and G_{2}, and a rank-decomposition of G obtained by identifying $u_{1} v_{1}$ and $v_{2} u_{2}$

8e. EHF graphs having no star cutset

Theorem (Le (2018))

Every even-hole-free graph G with no star cutset has rank-width at most 3.

- The set of basic graphs: cliques, holes, long pyramid, extended nontrivial basic graphs.
- Every basic graph has rank-width at most 3: $r w$ (clique) ≤ 1, $r w($ hole $) \leq 2, r w($ long pyramid $) \leq 3$, or $r w($ extended nontrivial basic graph) ≤ 3.

- Merging two blocks of the 2-join decomposition preserves the rank-width.

8f. Results on width of EHF graphs

Theorem (Adler, et al. (2018))
\exists a family of (even hole, diamond)-free graphs without clique cutsets with unbounded rank-width.

Figure: A diamond-free ehf graph that may have arbitrarily large rank-width

So, excluding clique cutset \nRightarrow bounded tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8 g . Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8 g . Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8 g . Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8 g . Tree-width of K_{4}-free EHF graphs is unbounded

Theorem (S., Trotignon (2019))
There exists a family of (even hole, K_{4})-free graphs with arbitrarily large tree-width.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

Why these graphs have large tree-width?

- The graph contains $K_{\ell+1^{-}}$minor.

Theorem (S., Trotignon (2019))
For any $\ell \geq 0$, layered-wheels on $\ell+1$ layers have tree-width at least ℓ.

8g. Tree-width of K_{4}-free EHF graphs is unbounded

 It was actually cheating... The graph is not an even-hole-free graph

The real construction:

8g. Rank-width of K_{4}-free EHF graphs is unbounded

Theorem (Gurski, Wanke (1928))
If a graph G contains no $K_{3,3}$ as a subgraph, then $t w(G) \leq 6 c w(G)-1$.

Theorem
A layered wheel contains no $K_{3,3}$ as a subgraph.

- If one side of the $K_{3,3}$ is a clique, then G contains a K_{4}.
- Otherwise, each side of $K_{3,3}$ contains a non-edge, so G contains $K_{2,2}\left(i . e . C_{4}\right)$.

Lower bound: the clique-width of a layered wheel on $\ell+1$ layers is at least $\frac{\ell+1}{6}$.

8g. Rank-width of K_{4}-free EHF graphs is unbounded Theorem (S., Trotignon (2019))
For $\ell \geq 2$, there exists a layered wheel G_{ℓ} with rank-width at least ℓ.

8 g . Tree-width of K_{4}-free EHF graphs is in $\mathcal{O}(\log n)$

Theorem (Cygan, et al. (2015)) $t w\left(G_{\ell}\right) \leq p w\left(G_{\ell}\right) \leq \omega(\mathcal{I})-1$, where \mathcal{I} is an interval graph containing G_{ℓ} as a subgraph

Figure: Interval graph \mathcal{I} that contains a layered wheel with 3 layers

8g. Analysis of layered wheel

- We actually have a parameter k for G_{ℓ} that determines the girth of G_{ℓ}. Given large k, this family provides an example of sparse graph with high tree-width.
- G_{ℓ} needs a huge number of vertices to increase the lower bound on the tree-width, and it must contain a vertex of high degree.

8h. EHF graphs with no K_{k} minor have $t w \leq f(k)$

Theorem (Aboulker, Adler, Kim, S., Trotignon (2021))
An even-hole-free graph G with no K_{k}-minor satisfies $t w \leq f(k)$.

Induced-wall theorem for H -minor-free graph

Theorem (Aboulker, Adler, Kim, S., Trotignon (2021))
$\forall H$, if G is H-minor-free with $t w(G) \geq f_{H}(k)$, then G contains a
($k \times k$)-wall (possibly subdivided) or the line graph of a chordless
($k \times k$)-wall (or call it co-wall) as an induced subgraph.

Figure: $\mathrm{A}(k \times k)$-wall and ($k \times k$)-co-wall

8h. EHF graphs with no K_{k} minor have $t w \leq f(k)$
Theorem (Fomin, Golovach, Thilikos, 2011)
For every H and an integer k, there exists a function $f_{H}(k)$ s.t. for every connected H-minor free graph G with $\operatorname{tw}(G) \geq f_{H}(k), G$ contains either Γ_{k} or Π_{k} as a contraction.

Figure: Γ_{6} and Π_{6}
G^{\prime} is a contraction of G if G^{\prime} can be obtained by contracting edges of G

8h. EHF graphs with no K_{k} minor have $t w \leq f(k)$

Let G be s.t. $\operatorname{tw}(G) \geq f_{H}(k)$, then G contains Γ_{k} or Π_{k}

Figure: We can extract a triangulated grid

8h. EHF graphs with no K_{k} minor have $t w \leq f(k)$

Figure: Consider the graph containing the contracted triangulated grid

8h. EHF graphs with no K_{k} minor have $t w \leq f(k)$

fork

Figure: For some constant size of the triangulated grid, we find forks and semiforks

8h. EHF graphs with no K_{k} minor have $t w \leq f(k)$

Figure: Combining them, we get a large stone wall

Figure: Applying a "cleaning" procedure, we can extract a ($k \times k$)-wall or a ($k \times k$)-co-wall

8i. EHF graphs with $\Delta \leq 3$ have bounded tree-width

Theorem (Aboulker, Adler, Kim, S., Trotignon (2020))
An even-hole-free graph with maximum degree at most 3 has tree-width at most 3.

Theorem (Aboulker, Adler, Kim, S., Trotignon (2020))
Let G be a (theta, prism)-free subcubic graph. Then either:

- G is a basic graph; or
- G has a clique separator of size at most 2; or
- G has a proper separator.

8i. EHF graphs with $\Delta \leq 3$ have bounded tree-width

Theorem (Aboulker, Adler, Kim, S., Trotignon (2020))
Let G be a (theta, prism)-free subcubic graph. Then either:

- G is a basic graph; or
- G has a clique separator of size at most 2; or
- G has a proper separator.

Figure: Basic graphs and proper separator

8i. EHF graphs with $\Delta \leq 3$ have bounded tree-width

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Subcubic even-hole-free graphs have tree-width ≤ 3.
Sketch of proof.

- Every basic graph has tree-width at most 3
- "Gluing" along a clique and proper gluing preserve tree-width

How to prove a class \mathcal{C} has bounded/unbounded (\cdot)-width?

- Proving unbounded tree-width/rank-width is done by giving a family of graphs in \mathcal{C} whose tree-width grows with the size of the graphs.
- Proving the "bounded" case is done by applying the structural properties of the class (such as: the structure theorem), apply graph chordalization.
- Just a feeling: unboundedness might be "easier" to prove via rank-width than clique-width.

